

RPUG 2018 CONFERENCE - SOUTH DAKOTA 30 Years On The Road To Progressively Better Data

Rapid City September 18-21

Field Experiment for Accuracy Verification of Pavement Inspection in TRUE Project

Kazuya Tomiyama (Kitami Institute of Technology, Japan) Hiroyuki Mashito (Toa Road Corporation, Japan)

Shuich Kameyama (Hokkaido University of Science)

Hiroyasu Nakamura (NIPPO Corporation, Japan)

Contents

- 1. Introduction
- 2. Overview of the TRUE Project
- 3. Experiment Results
- 4. Recent Works
- 5. Summary

Section 1 Introduction

Who's PDRG?

Pavement Diagnosis Researchers Group

- a specific nonprofit organization established in 2006
- the former FWD Research Group established in 1995

Scope: Measurement, inspection, data analysis, and evaluation of *structural* and *functional* characteristics of pavements

Consists of

- public agencies
- contractors
- consultants
- vendors
- academia

Objectives

- Exchange idea and information
- Improve and spread technologies
- Provide knowledge and information
- Provide technical support

- A lot of aged pavements
- Shortage of budgets for maintenance and rehabilitation
- Retirement of experienced engineers

Specific Strategy in Japan


舗装点検要領 Pavement Inspection Manual

平成28年10月 国土交通省 道路局

October, 2018 BPR, MLIT The Road Bureau of Ministry of Land, Infrastructure, Transport and Tourism (MLIT) has issued...

Pavement Inspection Manual (2016)

- introducing the International Roughness Index (IRI)
- to construct a *Maintenance Cycle*

Acceleration of Profiler Development

Convenience

Class 1

- Rod and Level
- Static Dipstick

- Class 3
- RTRRMSs
- Smartphone

Devices

- Visual Inspection

- Subjective Methods

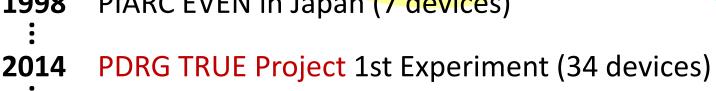
Class 4

Accuracy

Conflict between Accuracy and Convenience

High

Source: Little Book of Profiling


- High-speed Inertial Profilers

Brief History

PIARC EVEN in Japan (7 devices)

PDRG TRUE Project 2nd Experiment (28 devices) 2016

PDRG TRUE Project 3rd Experiment (28 devices)

30 years on the Road To Progressively Better Data

Harmonize and Compare Test Methods for Surface Roughness Under Actual Road Environment

performed by a subcommittee of the committee on surface roughness characteristics in the PDRG

Section 2 Overview of the TRUE Project

Improving Technologies of Surface Measurement Devices under Actual Road Environment by

- supporting the experiment operations
- analyzing the data obtained in experiments
- reporting and publishing the outcomes of activities

Features

- involving both high- and low-speed devices
 - -> enhancing introduction and development of new devices
- conducting the experiments not only on highway but also local roads -> fit for the purpose

History of TRUE Project

Pre-experiment

Establish the reference measures (PWRI)

Accuracy Overview

TRUE 2014 (1st Exp. Sep. 2014)

Overseas Participation

Extra Test Section

TRUE 2016 (2nd Exp. Sep. 2016)

- **Accuracy Report**
- **Device** Groping

TRUE 2018

(3rd Exp. Sep. 2018) postponed due to earthquake

- High quality reference profiles and open data for inter-comparison
- Meeting engineers and exchange information

Pavement Inspection

30 years on the Road To Progressively Better Data

The experiments were conducted on prefectural roads with the cooperation of Hokkaido prefecture of Japan.

- 200 m long with 20 m and 5 m additional extents
- including arterial and residential roads

Summary of Test Sites

Cito	Section	Road Class	Longth (m)	IRI (mm/m) for 200 m	
Site	Section Road Cla		Length (m)	FY 2014	FY 2016
	Section 1-1		200	2.6	2.6
1	Section 1-2	Arterial		1.8	1.8
	Section 1-3 *			N/A	2.4
2	Section 2-1	Residential		6.3	6.5
۷	Section 2-2	nesidelitial		4.5	4.5

^{*} Section 1-3 was measured only in the second experiment in 2016 30 years on the Road To Progressively Better Data

Number of the Participated Devices

	FY 2014	FY 2016	FY2018	Total
High-Speed Devices	20	15	12	47
Low-speed Devices	14	13	16	43
Total	34	28	28	90

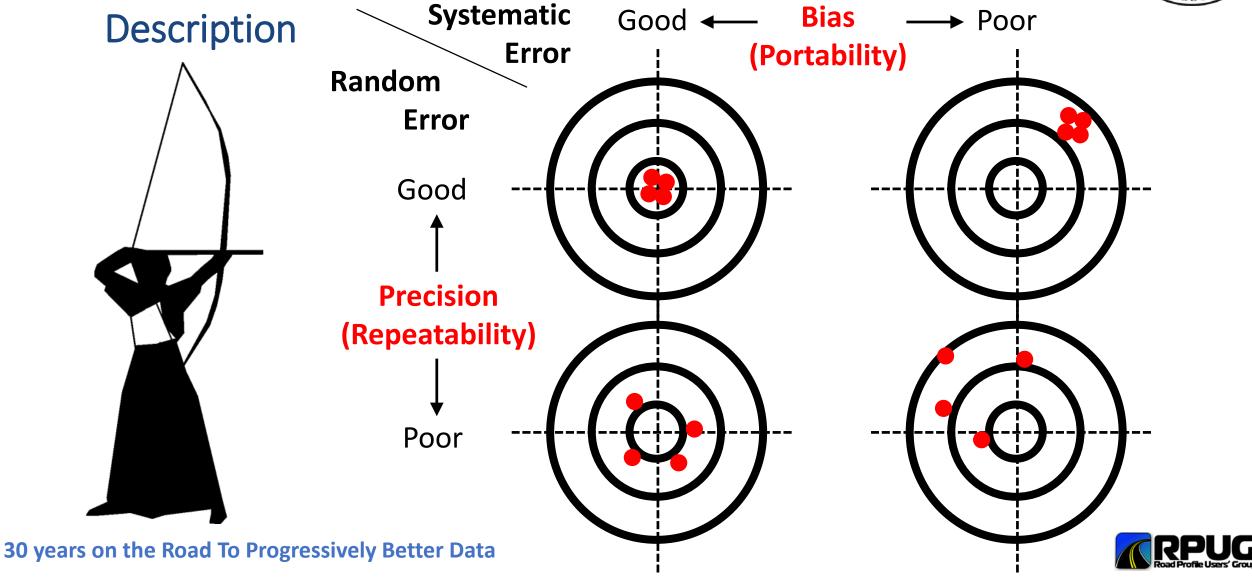
Inertial Profiler

MMS

Walking Profiler

Low-speed Profiler

Data Recording and Reporting

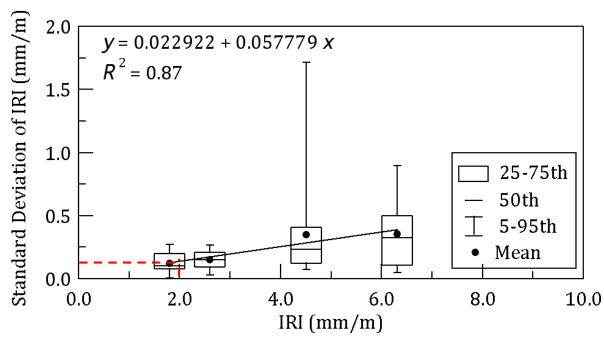


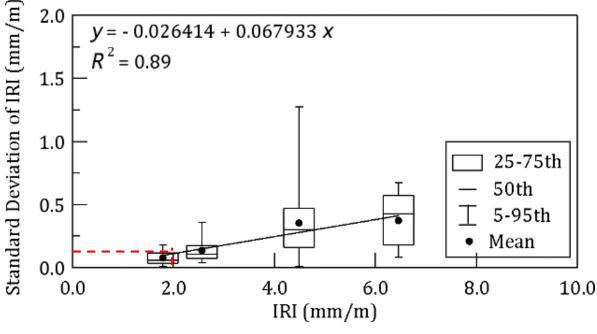
Test Site	IRI=1.8~2.6 mm/m Arterial Road	IRI=4.5~6.5 mm/m Residential Road		
	Arterial Road	Residential Road		
Driving Speed	40, 50, 60 km/h	20, 30, 40 km/h		
Num. of Rept.	3			
IRI	.xlsx; 10 and 200 m fixed interval			
Profile	.csv; possible minimum longitudinal sampling interval			

Analysis Method

Details

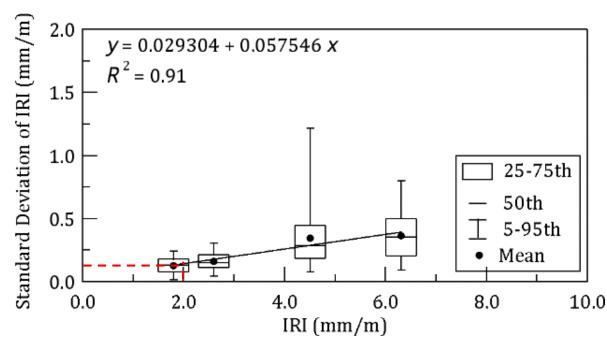
	Error	Factor	Description
Repeatability (Precision)	Random An ability to repeat the measures with a same profiler	Within Deviation from the average obtained with repeated runs	
Reproducibility and Portability (Bias)	Systematic An ability to repeat the measures with a different profiler	Between Deviation from the average obtained with an expected value	
Influence of Speed (only for high- speed devices)	Systematic An ability to repeat the measures on different operation speeds	Within Deviation from the average obtained with repeated runs	

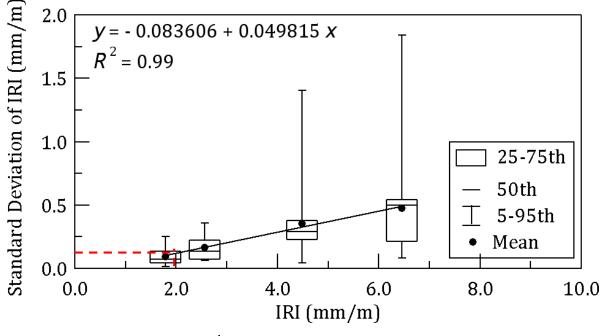



Section 3 Experiment Results

Influence of Operating Speed

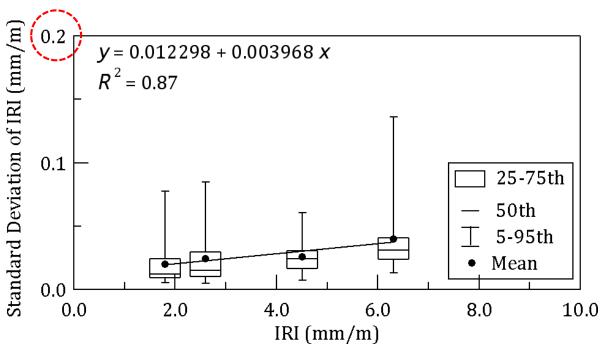
First Experiment in 2014


Second Experiment in 2016

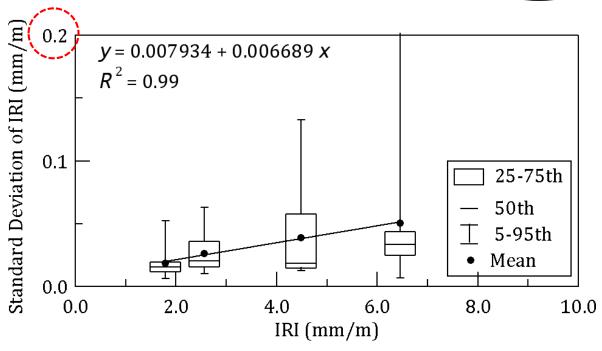

Within 10% precision of the measured IRI values on the 75th percentile (e.g. $2.0 \pm 0.2 \text{ mm/m}$)

Repeatability of High-speed Devices

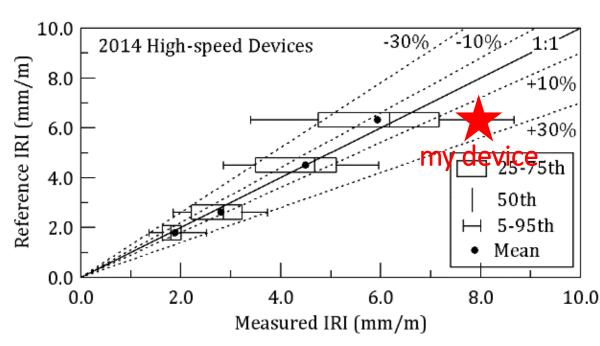
First Experiment in 2014


Second Experiment in 2016

Within 10% precision of the measured IRI values on the 75th percentile (e.g. $2.0 \pm 0.2 \text{ mm/m}$)



Repeatability of Low-speed Devices

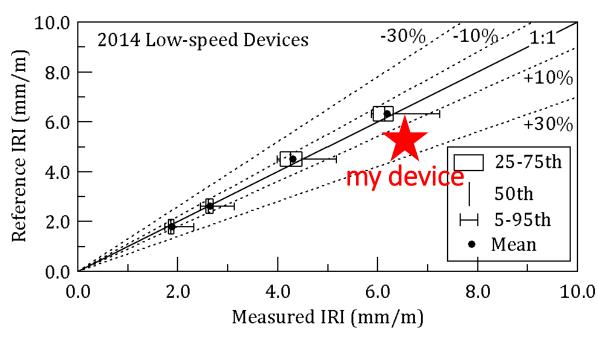

Second Experiment in 2016

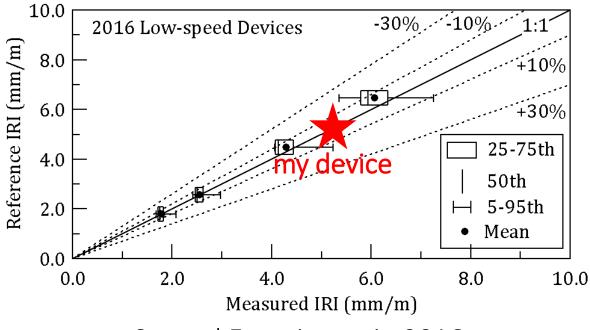
Within 1% precision of the measured IRI values on the 75th percentile (e.g. $2.0 \pm 0.02 \text{ mm/m}$)

Reproducibility of High-speed Devices

10.0 2016 High-speed Devices Reference IRI (mm/m) 8.0 6.0 25-75th 4.0 50th 5-95th 2.0 Mean 2.0 4.0 6.0 8.0 10.0 0.0 Measured IRI (mm/m)

First Experiment in 2014


Second Experiment in 2016


Within 10 % (some devices exceeded 30%) on the 50th-75th percentile

Reproducibility of Low-speed Devices

First Experiment in 2014

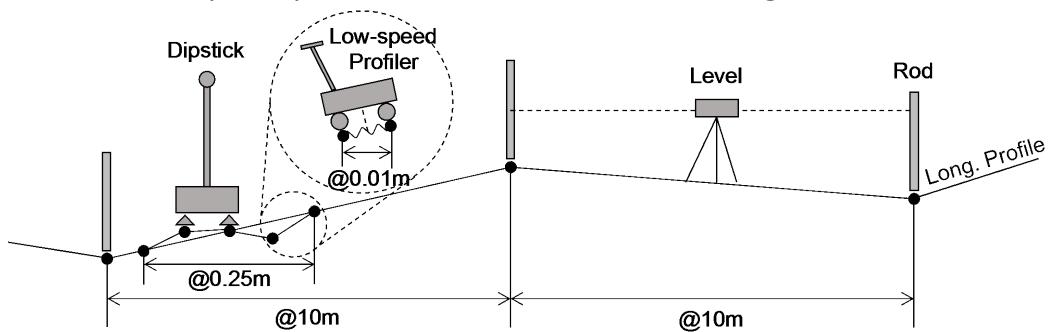
Second Experiment in 2016

Within 10 % (some devices exceeded 30%) on the 25th-75th percentile

Section 4 Recent Works

Device Grouping (since 2018)

Gro	oup	Requirement				Profiler Class	
	Α	Subjective	Visual insp. / Ride exp.		On Vehicle		Class 4
l	В	Subjective	Visual Inspection		By Walk		
	Α		Static		Direct Measurement		Class 1
11	В	B			Indirect Measurement		
	Α		Dynamic	Low- Speed	Non-contact		
III	B1	Profile-based Method			Contact	Dedicated Device	Class 2
	B2					Multi-purpose Device	
IV	Α			High-	Non-contact		CldSS Z
	B1				Contact	Dedicated Device	
	B2					Multi-purpose Device	
	Α		Speed	Speed	Non-contact		
V	B1	Response Type			Contact	Dedicated Device	Class 3
	B2					Contact	Multi-purpose Device
VI	-	Otherwise					-



Measurement of "True" Profiles

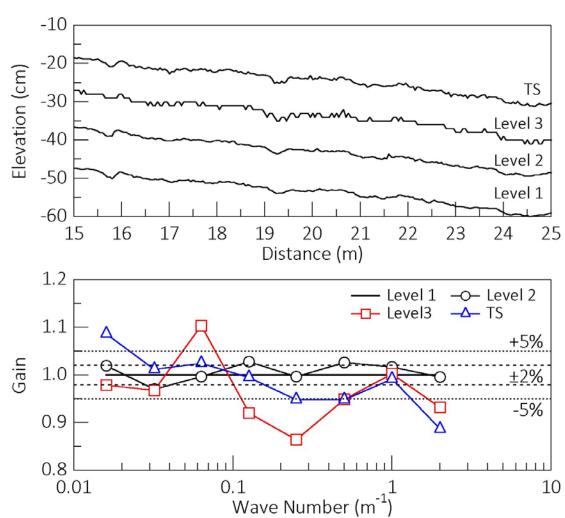
Basic 3 steps:

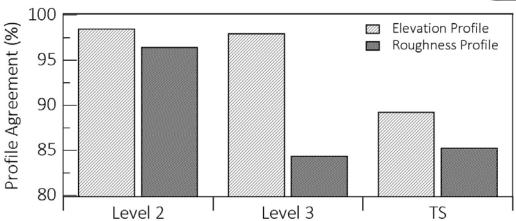
- 1. The Dipstick: 0.25 m interval for IRI sensitivity
- 2. Rod and Level: 10 m interval for slope
- 3. Low-speed profiler: 0.01 m interval for roughness

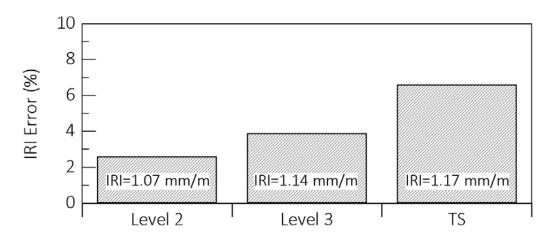
Benchmark Testing

Candidate Device

Device	Level	Name/Resolution	
Digital Level	1	DiNi 0.3 (Trimble)	
Bar-code Leveling Staff	1		0.01 mm
Digital Level	2	DL-502 (TOPCON)	
Bar-code Leveling Staff	2		0.1 mm
Auto Level	3	AT-M3 (TOPCON)	
Leveling Staff	-		1 mm
Total Station	1	TS15 1" (Leica)	
			0.1 mm







Testing Result

PDRG TRUE Project

- Harmonize and Compare Test Methods for Surface Roughness Under Actual Road Environment
- First and second experiments were conducted at Hokkaido, Japan in 2014 and 2016
- Not all of the devices used in Japan, but a number of them have been involved in this Project.

Analysis of Experiment Results

- Influence of operating speed for high-speed devices
- > Repeatability
- Reproducibility and Portability

Additional Data

- Structural Properties were measured immediately after the experiments.
 - FWD (Falling Weight Deflectometer)
 - GPR (Ground Penetrating Radar)

Relationship between functional and structural properties?

Next event - coming soon

- > Third experiment will be held in October, 2018
- > It will provide a certification of measurement accuracy

Contact:

Kazuya Tomiyama, Dr. Eng.

Associate Professor

Kitami Institute of Technology

tomiyama@mail.kitami-it.ac.jp

Questions?

